
ffmpeg cli multithreading

Anton Khirnov

FFlabs

2023-09-23
VDD@Dublin



ffmpeg cli

most widely used multimedia transcoder on at least two planets

uses libav* libraries to demux, decode, filter, encode, mux

almost all format-specific logic is in the libraries

covers more use cases than any other comparable tool

all scales — from individual users to giant corporations



A brief history: 2000

∼700 LoC

raw input only, no decoding

encoding and muxing

raw YUV/V4L video in

raw PCM/OSS audio in

video encoder

audio encoder

mux



A brief history: 2001

∼2000 LoC

demuxing and decoding

multiple input and output files with multiple streams each

input 0

input 1

input 2

vdec 0

vdec 1

adec 0

venc 0

aenc 0

venc 1

aenc 1

output 0

output 1

audio streamcopy



A brief history: up to now

2005 — subtitles (∼4.5 kLoC)

2010 — simple video filtering with libavfilter (∼4.5 kLoC)

2012 — complex filtergraphs (∼5 kLoC)

2013 — basic hardware acceleration (∼6 kLoC)

2016 — full hwaccel pipelines become possible (∼8 kLoC)
as of 2022:

∼11 kLoC
dynamic stream parameter changes
more options than anyone can remember
options interact in highly nontrivial ways



General transcoding pipeline

input 0

input 1

input 2

vdec 0

vdec 1

adec 0

filtergraph 0

filtergraph 1

filtergraph 2

venc 0

aenc 0

venc 1

aenc 1

output 0

output 1

subtitle streamcopy



Goals

bring code structure in alignment with actual data flow by
making the code more explicitly object-oriented
clearly defined interfaces and responsibilities
separation of public and private state
every major component in its own thread
information flows downstream through the pipeline

makes the code easier to understand/maintain/extend

improved throughput under the right conditions



Progress & status

project started in late 2021

≳ 700 commits, almost every line of code in fftools/ffmpeg* touched

in master: demuxer&muxer threading, “fake” decoder threading
extras

sync queues
frame duration handling
timestamps handling improvements
opaque passthrough

in my dev branch
fully threaded transcoding
some features still broken
needs more tuning and testing



Future directions

separate encoders from output streams
encoders are currently coupled to muxers
sending an encoded stream to multiple muxers
looping an encoded stream back to a decoder

separate decoders from input streams

dynamic pipelines

scripting (Lua?)


